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Abstract

To develop a quantitative in situ structural health-monitoring system, which measures the scattered wave
field using piezoelectric sensors, that can determine the size and severity of structural anomaly in plate-like
structures, it is important to characterize the interaction of plate waves with damages. This paper presents a
theoretical and experimental investigation of the scattering behavior of extensional and flexural plate waves
by a cylindrical inhomogeneity. Exact solutions are obtained by using the wave function expansion method,
while the Born first approximation has been employed to derive explicit solutions that form the basis for
efficient parametric inversion and eigenfunction back-propagation. To verify the analytical methods,
experiments have been performed on a metallic plate, with a cylindrical mass being bonded to one side of the
plate to simulate damage. Circular piezoelectric transducers were surface mounted on the plate to generate
and measure stress waves. A good correlation has been observed between the analytical solutions and the
experimental data. The present results reveal that the scattering pattern is strongly dependent on the ratio of
wavelength to the size of the inhomogeneity, indicating the importance of selecting the appropriate diagnostic
frequency as well as the optimal placement of sensors to achieve maximum sensor response.
r 2004 Published by Elsevier Ltd.

1. Introduction

For plate-like structures, guided waves (which is often called Lamb waves) have been the method
of choice in both conventional non-destructive evaluation (using contact-based ultrasound
see front matter r 2004 Published by Elsevier Ltd.
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transducers or laser ultrasonics techniques) [1–5] and in situ structural health monitoring in which
built-in active sensors are used to generate and measure guided waves [6–8]. Studies to date have
shown that guided wave techniques can be applied to detect a variety of structural damages,
including delamination in composite structures, corrosion damages, fatigue cracks, and debond in
bonded joints. While most of the investigations have been qualitative in nature, attempts have been
made to relate the measured wave fields to the size and severity of structural damages. In this
regard, the scattering characteristics of structural damages are required to enable inverse solutions,
such as parametric inversion or computerized tomography [9,10]. These results will also aid the
optimal placement of sensors to achieve high signal-to-noise ratio.
Although the Rayleigh-Lamb solution for plate waves is exact, it is rather unwieldy for

characterizing the interaction of plate waves with structural damages, due to the need to account
for the effect of mode conversions among an infinite number of wave modes. It is known that even
when the excitation frequency is below the cut-off frequency of the first-order modes (i.e. there is
only one propagating wave), higher-order modes, which are near-field waves [11], participate in
the mode conversion process at the interface between damages and the surrounding structure [12].
Recently Grahn [13] presented a numerical solution for a part-through hole by using a double
series wave function expansion method. It was found that a high number of Lamb modes were
needed to achieve convergence. For instance, at a moderately low frequency of one-third the cut-
off frequency of the second flexural mode, a total of nine Lamb modes were required in the
calculations. For higher frequencies, more terms would be needed in the expansions which would
result in a slower convergence rate [13]. Therefore, a computationally more efficient method is
required for inverse solutions.
As an alternative to the Lamb solution, higher-order plate theories, in particular the

Kane–Mindlin extensional deformation theory [14] and the Mindlin plate bending theory [15],
have been shown to provide a very accurate description of dispersive behavior of guided waves,
both symmetric and anti-symmetric, up to the cut-off frequency of the second flexural wave mode
[12,16]. At the low-frequency limit, the Mindlin plate theories reduce to the Poisson plate theory
for extensional waves and the Kirchhoff plate theory for flexural waves, which will be collectively
referred to as lower-order plate theories. In the case of scattering of extensional waves by circular
inclusions, McKeon and Hinders [16] extended the lower-order plate theory solution of Pao [17]
to the Kane–Mindlin plate extension theory. It is noted, however, the scattering amplitude for an
open hole obtained by McKeon and Hinders differed significantly from those for a part-through
hole reported by Grahn [13].
The analogous problem of scattering of flexural waves by circular inclusions was solved by Vemula

and Norris for the Mindlin plate theory [18] as well as the lower-order Kirchhoff plate theory [19]. In
their paper, Vemula and Norris [19] reported that at the low-frequency limit, scattering was mainly in
the forward and backward directions, with very little side scattering. It is not clear, however, whether
the scattering at higher frequencies, approaching the cut-off frequency of the second flexural mode,
would follow the same trend. Some experimental results have been reported by Fromme and Sayie
[20,21], which confirmed that the Mindlin plate theory is accurate in capturing the scattered wave field
at the edge of an open hole. However, no experimental results could be located in the literature to
verify the far-field scattering pattern by a circular hole or inclusions in general.
It is well recognized that the scattering of electromagnetic waves can be classified into three

regimes [22], viz, the Rayleigh regime (wavelength much greater than target), the optical regime
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(wavelength much less than target), and the resonance regime (wavelength comparable to target
size). In the resonance regime, the scattering pattern or the radar cross-section is most
complicated and difficult to predict, because the scattering pattern may vary significantly with the
ratio of target size to wavelength. Since an in situ structural health monitoring system is intended
to detect relatively small damage with size comparable to both the plate thickness and the
wavelength of the guided waves that can be generated by built-in piezoelectric transducers, in situ
structural health monitoring inevitably falls within the resonance regime. It is therefore essential
to characterize the scattering pattern in this complex regime to help with the design of in situ
health-monitoring systems and the interpretation of experimental measurements.
The purpose of this paper is to present solutions of the far-field scattering patterns of both

extensional and flexural waves by a cylindrical inhomogeneity using the higher-order plate
theories, with the results being compared to experimental data. In addition, a comparison will be
made of the scattering patterns determined by the wave function expansion method, which can be
viewed as exact solutions, and the Born approximation, with a view to determining the range of
validity of the Born or Rytov approximations. Although the Born approximation is known to
impose severe mathematical limitations to the range of objects that can be imaged, this
approximation is fundamental to the image reconstruction process. For instance, both the plate-
wave diffraction tomographic method developed by Rose and Wang [10,23,24] and the eigen
function back-propagation method [25–27] rely on the Born approximation. Kak and Slaney [28]
noted that in the case of pressure wave the necessary condition for the Born approximation to be
valid is that the change in phase between the incident field and wave propagating through the
target be less than p. This limitation implies that the target size needs to be less than the
wavelength when the change in refractive index is equal to unity. It is yet unclear whether such a
requirement also applies to guided waves.
This paper is structured as the following. Exact solutions for the scattering of extensional and

flexural waves by a circular inhomogeneity are presented in Section 2. Approximate solutions
based on the Born approximation are presented in Section 3. Comparisons between analytical
solutions, the Born approximation, and experimental results are summarized in Sections 4 and 5,
respectively.
2. Wave scattering by cylindrical inhomogeneity

Consider an infinite plate with a cylindrical inhomogeneity, representing either a delamination
in a quasi-isotropic composite plate or a corrosion-induced thinning in a metallic plate. For
simplicity, the properties of the inhomogeneity are assumed to be uniform through its thickness.
Referring to Fig. 1, the problem being considered is an elastic plate of thickness h, containing a
cylindrical inhomogeneity of a radius a and thickness hn at the origin of a cylindrical coordinate
system. The inhomogeneity, which can be viewed as representing either a delamination or a
corrosion damage, as illustrated in Fig. 2. The inhomogeneity, shown in Fig. 2(c), has material
properties (cnij; r

n) that are different from those of the plate (cij ;r). Here the parameters cij denote
the stiffness matrix for a transversely isotropic material, and r the density.
Since the governing equations for the extensional and flexural deformations are uncoupled for

inhomogeneities whose properties do not vary in the thickness direction, solutions of the
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Fig. 1. Dimension and coordinate system for a plate containing a cylindrical inhomogeneity.

Fig. 2. Cross-section view of an inhomogeneity representing delamination and corrosion damages.
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scattering patterns will be presented separately in the following two sub-sections. It is noted that
the present method can be readily extended to analyze asymmetric damage, such as a part-
through hole, by coupling the extensional and flexural waves through the continuity conditions at
the interface between the inhomogeneity and the exterior plate.
2.1. Extensional wave

By assuming that the through-thickness strain is uniform through the plate thickness, Kane and
Mindlin [14] developed a higher-order plate theory for the extensional waves in an isotropic plate.
In the following, the Kane–Mindlin theory will be extended to the case of transversely isotropic
material, following the method employed by Kotousov and Wang [29,30] for the static case.
In the Cartesian coordinate system shown in Fig. 1, the displacement fields take the following

form:

ux ¼ vxðx; yÞ; uy ¼ vyðx; yÞ; uz ¼ vzðx; yÞ
2z

h
: ð1Þ
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Making use of the generalized Hooke’s law for transversally isotropic medium (the plate is
isotropic in the x�y plane), the stress resultants (see Refs. [29, 30] for notations) can be expressed
in terms of the displacement components, noting that h denotes the total thickness [29]

Nxx ¼ hðc11�xx þ c12�yy þ 2c13vz=hÞ; ð2aÞ

Nyy ¼ hðc12�xx þ c11�yy þ 2c13vz=hÞ; ð2bÞ

Nzz ¼ hðkc13�xx þ kc13�yy þ 2k2c33vz=hÞ; ð2cÞ

Nxy ¼ h
c11 � c12

2
�xy; ð2dÞ

Rx ¼ c44
h2

6

@vz

@x
; ð2eÞ

Ry ¼ c44
h2

6

qvz

qy
; ð2fÞ

where k ¼ p=
ffiffiffiffiffi
12

p
and the constants (c11;c12;c13;c33;c44) are the elastic constants. Inserting the

above expressions into the equations of motion yields the following equations for the case of zero
body forces:

c11
q2vx

qx2
þ c12

q2vy

qxqy
þ

2kc13

h

qvz

qx
þ

c11 � c12

2

q2vx

qy2
þ

q2vy

qxqy

 !
¼ r

q2vx

qt2
; ð3aÞ

c11 � c12

2

q2vx

qxqy
þ

q2vy

qx2

 !
þ c12

q2vx

qxqy
þ c11

q2vy

qy2
þ
2kc13

h

qvz

qy
¼ r

q2vy

qt2
; ð3bÞ

h2

6
c44r

2vz � hkc13
@vx

@x
þ

@vy

@y

� �
� 2k2c33vz ¼

1
6rh2

@2vz

@t2
ð3cÞ

The cut-off frequency oe of the second extensional wave can be determined from Eq. (3c) by
letting vz ¼ Ceioet; vx ¼ vy ¼ 0; which represents a purely thickness mode

oe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12k2

h2
c33

r
:

s
ð4Þ

Since the transverse stiffness of most quasi-isotropic composite laminates is much lower than
the in-plane stiffness, the above solution suggests that the cut-off frequency of transversely
isotropic material could be considerably lower than that of the equivalent isotropic material.
Therefore, it is important to account for the influence of this lower cut-off frequency on the
dispersion behavior of the extensional waves.
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To determine the dispersion relationship for a transversely isotropic material, let us express the
in-plane displacement components in terms of two potentials, j and c,

vx ¼
q
qx

þ
qc
qy

; ð5aÞ

vy ¼
qj
qy

�
qc
qx

: ð5bÞ

Then, Eqs. (3a–b) can be satisfied after introducing a time factor e�iot that will be omitted in the
following, if

r2cþ k2
3c ¼ 0; ð6aÞ

c11r
2jþ ro2jþ

2kc13

h
vz ¼ 0; ð6bÞ

c44r
2vz þ rðo2 � o2

eÞvz �
6

h
kc13r

2j ¼ 0 ð6cÞ

with

k2
3 ¼

2ro2

c11 � c12
: ð6dÞ

It can be seen that the present solution does recover the Kane–Mindlin solution in the special
case of isotropic plate [14] by setting c11 ¼ c33 ¼ lþ 2m; c12 ¼ c13 ¼ l; and c44 ¼ m:
Eliminating vz between Eqs. (6b) and (6c), the equation governing j is found to be

r4jþ 2Br2jþ Cj ¼ 0 ð7aÞ

with

B ¼
ro2

2c11
þ

r o2 � o2
e

� �
2c44

þ
6k2c213

h2c11c44
; ð7bÞ

C ¼
o2 � o2

e

� �
r2o2

c11c44
: ð7cÞ

Inserting j ¼ eikx into Eq. (7a), the following wave numbers k are obtained:

k2
1 ¼ B þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � C

p
; ð8aÞ

k2
2 ¼ B �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � C

p
: ð8bÞ

Since Poisson’s ratio has only a very minor influence on the values of the wave numbers, the
major deviation of the dispersion relationship from that of isotropic material is due to the lower
modulus in the thickness direction. An example is shown in Fig. 3 to illustrate the difference in the
dispersion curves between a transversely isotropic material and the equivalent isotropic material
whose properties are identical to the in-plane properties of the transversely isotropic material. It
can be seen that the approximately non-dispersive region (where group velocity is nearly
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Fig. 3. Dispersion curves of extensional waves in transversely isotropic material. (a) phase velocity and (b) group

velocity. The frequency is normalized by the cut-off frequency of the equivalent isotropic material.
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independent of frequency) has shrunk significantly as a result of reduction in the cut-off frequency
of the second mode. It is also interesting to note from Eq. (7) that the dispersion curve of the
transversely isotropic material would trace over that of the equivalent isotropic material when the
frequency is normalized by the cut-off frequency of the transversely isotropic material.
Since k1 is never equal to k2; it is advantageous to decompose the displacement potential j into

two potentials, j1 and j2; where j ¼ j1 þ j2: Here r2ji þ k2
i ji ¼ 0; i ¼ 1; 2: Now the plate

displacement components can be expressed in terms of three potentials, noting Eq. (6b) for vz;

vx ¼
qj1

qx
þ

qj2

qx
þ
qc
qy

� �
e�iot; ð9aÞ

vy ¼
@j1

qy
þ

qj2

qy
�

qc
qx

� �
e�iot; ð9bÞ

vz ¼ s1j1 þ s2j2

� �
e�iot; ð9cÞ
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where

si ¼
hc11

2kc13
k2

i �
ro2

c11

� �
; i ¼ 1; 2: ð9dÞ

Consider an incident plane wave traveling in the positive x direction, vx ¼ eik1x; suppressing
e�iot in the sequel. The displacement potentials for the incident wave can be written as

jðiÞ
1 ¼ �ieik1x=k1 ¼

X1
n¼0

2nin�1Jnðk1rÞ cosðnyÞ=k1; jðiÞ
2 ¼ H ðiÞ ¼ 0; ð10Þ

where the superscript i denotes parameters pertaining to the incident wave, and

2n ¼
1; n ¼ 0;

2; nX1:

�
ð11Þ

Following the standard wave function expansion method [16,18,31], the general solutions of the
scattered wave and the wave inside a circular scatterer at the origin of a cylindrical coordinate
system can be expressed as in terms of Hankel and Bessel functions.

jðsÞ
1 ¼

X1
n¼0

AnHnðk1rÞ cos ny; jðsÞ
2 ¼

X1
n¼0

BnHnðk2rÞ cos ny; cðsÞ
¼
X1
n¼0

CnHnðk3rÞ sin ny; ð12aÞ

jðtÞ
1 ¼

X1
n¼0

DnJnðk1rÞ cos ny; jðtÞ
2 ¼

X1
n¼0

EnJnðk2rÞ cos ny; cðtÞ
¼
X1
n¼0

FnJnðk3rÞ sin ny; ð12bÞ

where the superscript t denotes parameters pertaining to the wave field transmitted into the
scatterer. The six sets of unknown coefficients An;Bn;Cn;Dn;En;Fn are to be determined from the
continuity conditions at r ¼ a;

vðiÞr þ vðsÞr ¼ vðtÞr ; v
ðiÞ
y þ v

ðsÞ
y ¼ v

ðtÞ
y ; ðvðiÞz þ vðsÞz Þ

hn

h
¼ vðtÞz ; ð13aÞ

N ðiÞ
rr þ N ðsÞ

rr ¼ N ðtÞ
rr ; N

ðiÞ
ry þ N

ðsÞ
ry ¼ N

ðtÞ
ry ; RðiÞ

rz þ RðsÞ
rz ¼ RðtÞ

rz : ð13bÞ

The linear set of equations (13a) and (13b) can be readily solved numerically or by using
symbolic manipulation software Mathematica [32]. For frequencies below the cut-off frequency of
second extensional wave, both k2 and k3 are purely imaginary, so there is only one outgoing wave
radiating from the scatterer. Therefore, the far-field ðk1r ! 1Þ scattered wave is given by

uðsÞ
r ðr; yÞ ¼ ik1

X1
n¼0

An

ffiffiffiffiffiffiffiffiffiffiffi
2

pk1r

r
ei½k1r�ð1þ2nÞp=4� cos ny 


ffiffiffiffiffiffiffiffiffiffi
2

pk1r

r
ei½k1r�p=4�S1ðyÞ; ð14Þ

where the asymptotic expansion lim
x!1

HnðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2=px

p
ei½x�ð1þ2nÞp=4� has been used. The function

S1ðyÞ denotes the far-field scattering amplitude for an incident extensional wave of unity
strength

S1ðyÞ ¼ ik1

X1
n¼0

Ane
�inp=2 cos ny: ð15Þ
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A parametric analysis reveals that the coefficients An depend on a large number of variables
including k1a; k2a; k3a; kn

1a; kn

2a; kn

3a; hn=h; and moduli cij and cnij : Since the transverse properties
and Poisson’s ratios only weakly influence the wave numbers, the scattering pattern is dominated
by four non-dimensional parameters, k1a; h�=h; o=oce; and o�

ce=oce; where oce denotes the cut-off
frequency of the second extensional mode. Numerical results and comparisons with experimental
data will be discussed in Section 4.
2.2. Flexural wave

The following solution follows closely the method employed by Vemula and Norris [18], but
using a slightly different formulation to facilitate parametric analysis as well as the sake of
consistency with the solution method for extensional wave. Adopting the method of Rose
and Wang [10], the governing equations for flexural waves depend on four properties, bending
stiffness D, rotary inertia rI ; deflection inertia rh; and shear stiffness mh: The wave field is
given in terms of the deflection w and two potentials f and c; with the angle of rotations being
given by

Or ¼
qf
qr

þ
1

r

qc
qy

; ð16aÞ

Oy ¼
1

r

qf
qy

�
qc
qr

: ð16bÞ

The governing equations for the two potentials f and c were given by Rose and Wang [10],
from which the wave numbers can be determined as following

k2
1;2 ¼ o2ðB �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � C

p
Þ; ð17aÞ

k2
3 ¼ 2

rIo2 � mh

Dð1� nÞ
; ð17bÞ

with

B ¼
1

2

rI

D
þ

rh

mh

� �
; ð18aÞ

C ¼
rI

D

rh

mh
�

rh

D

1

o2
: ð18bÞ

Consider an incident plane wave traveling in the positive x direction, w ¼ eik1x; suppressing
e�iot in the sequel. The displacement potentials for the incident wave can be written as

wðiÞ ¼ eik1x ¼
X1
n¼0

2ninJnðk1rÞ cosðnyÞ; fðiÞ
¼ g1w; cðiÞ

¼ 0: ð19Þ
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The general solutions of the scattered wave and the wave inside a circular scatterer can be
expressed as

wðsÞ ¼
X1
n¼0

AnHnðk1rÞ cos nyþ BnHnðk2rÞ cos ny; ð20aÞ

jðsÞ ¼
X1
n¼0

g1AnHnðk1rÞ cos nyþ g2BnHnðk2rÞ cos ny; ð20bÞ

cðsÞ
¼
X1
n¼0

CnHnðk3rÞ cos ny; ð20cÞ

wðtÞ ¼
X1
n¼0

DnJnðk1rÞ cos nyþ EnJnðk2rÞ cos ny; ð20dÞ

jðtÞ ¼
X1
n¼0

g1DnJnðk1rÞ cos nyþ g2EnJnðk2rÞ cos ny; ð20eÞ

cðtÞ
¼
X1
n¼0

FnJnðk3rÞ cos ny; ð20fÞ

where

g1 ¼ 1�
r
k2m

o2

k2
1

; g2 ¼ 1�
r
k2m

o2

k2
2

: ð21Þ

The coefficients An;Bn;Cn;Dn;En;Fn are to be determined from the following continuity and
equilibrium conditions at the inhomogeneity-plate interface r ¼ a:

wðiÞ þ wðsÞ ¼ wðtÞ; OðiÞ
r þ OðsÞ

r ¼ OðtÞ
r ; OðiÞ

y þ OðsÞ
y ¼ OðtÞ

y ; ð22aÞ

M ðiÞ
rr þ M ðsÞ

rr ¼ M ðtÞ
rr ; M

ðiÞ
ry þ M

ðsÞ
ry ¼ M

ðtÞ
ry ; QðiÞ

r þ QðsÞ
r ¼ QðtÞ

r : ð22bÞ

The resulting equations can be solved by either matrix inversion method or using symbolic
manipulation software Mathematica [32].
With both k2 and k3 being purely imaginary below the cut-off frequency of second flexural

wave, there is only one propagating wave radiating from the scatterer that contributes to the far-
field scattering field. In this case, the far-field ðk1r ! 1Þ scattered wave is given by

wðsÞðr; yÞ ¼
X1
n¼0

An

ffiffiffiffiffiffiffiffiffiffiffi
2

pk1r

r
ei½k1r�ð1þ2nÞp=4� cos ny 


ffiffiffiffiffiffiffiffiffiffi
2

pk1r

r
ei½k1r�p=4�S2ðyÞ; ð23Þ
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where S2ðyÞ denotes the far-field scattering amplitude for an incident flexural wave of unit
strength,

S2ðyÞ ¼
X1
n¼0

Ane
�inp=2 cos ny: ð24Þ

It is noted that the present definition of the scattering amplitude is different from that employed
by Vemula and Norris [18]. As will be shown later, this new definition, which is consistent with the
scattering amplitude for the extensional wave, will ensure that the scattering amplitude will not
diverge in the limit of rigid inclusion as encountered by Vemula and Norris [18].
Similar to the case of extensional wave, a parametric analysis suggests that the scattering

amplitude is dependent on six non-dimensional variables k1a; a=h; ðrIÞn=rI ; Dn=D; ðmhÞn=mh; and
o=oc; where oc denotes the cut-off frequency of the second flexural wave

oc ¼ k

ffiffiffiffiffiffi
mh

rI

s
: ð25Þ

For specific damage modes, such as corrosion damage or delamination damage, fewer non-
dimensional parameters need to be considered. This will be further discussed in the next section.
3. Solution by the Born approximation

It is apparent that the exact solutions presented in the preceding sections are applicable to only
simple geometries, such as cylindrical or elliptical scatterers. Furthermore, the complex
dependence of the scattered wave fields on the properties and dimensions of the inhomogeneity
renders it impractical to develop an efficient inverse solution method that can account for the
effect of diffraction. Because of this difficulty, most of the inverse solutions, such as the
computerized tomography [10, 23, 24, 28] and the eigenfunction backpropagation method [25–26,
33] inevitably rely on the use of the Born or Rytov approximations. In the following, the validity
of the Born approximation to guided waves will be assessed by comparing the Born solution with
the exact solution presented in the preceding sections for the special case of a cylindrical scatterer.
For the inhomogeneity, it is convenient to represent its properties in terms of those

corresponding to the exterior plate in the following form

Dn ¼ ð1þ d1ÞD; ð26aÞ

ðmhÞn ¼ ð1þ d2Þmh; ð26bÞ

ðrIÞn ¼ ð1þ d3ÞrI ; ð26cÞ

ðrhÞn ¼ ð1þ d4Þrh: ð26dÞ

The variations dn (n=1,2,3,4) are non-zero inside the inhomogeneity but vanish outside it. It is
noted that these plate-theory parameters are not material properties: they depend also on the
thickness h. Consider, for example, the bending stiffness D ¼ E0I ; where E0 denotes the plane-
strain Young’s modulus and I the moment of inertia ðI ¼ h3=12Þ: A variation in D could result
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from a variation in the Young’s modulus E, due for instance to fiber fracture, or it could result
from a variation in thickness h due to corrosion thinning, or it could be the result of variation in I
due to delamination [12], without a change in the overall plate thickness h. So in general all four
variations could be non-zero, and their precise values for a given damage mechanism need to be
measured experimentally.
By applying the Born approximation to the Mindlin plate theory [23,24], the scattered wave of

an incident plane wave from the left of an inhomogeneity, recalling Eq. (19), can be expressed as,
referring to Fig. 4 for the coordinate system,

ŵB
ðx;oÞ ¼

Z Z
d1DGðiÞ

bag3a;b � d2mhðwðiÞ
;a � OðiÞ

a Þðg3a þ g33;aÞ

n
�d3rIo2OðiÞ

a g3a þ d4rho2wðiÞg33

o
dx dz; ð27Þ

where the comma indicates differentiation with respect to coordinate x ða ¼ 1Þ or z ða ¼ 2Þ: The
above integration is performed over the scatterer. The relevant Green’s functions g31, g32, and g33
are given by

g31 ¼
i

4Dðk2
1 � k2

2Þ

qH0ðk1r
0Þ

qx
; ð28aÞ

g32 ¼
i

4Dðk2
1 � k2

2Þ

qH0ðk1r
0Þ

qy
; ð28bÞ

g33 ¼
i

4Dðk2
1 � k2

2Þ

H0ðk1r
0Þ

g1
; ð28cÞ

with r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � xÞ2 þ ðy � zÞ2

q
: By taking the far-field asymptotic expression of the Hankel

function, it can be shown that the Born solution corresponding to an incident plane wave given by
Eq. (19) reduces to

ŵðBÞ
¼ d1p1ðyÞ þ d2p2ðyÞ þ d3p3ðyÞ þ d4p4ðyÞ
� �

tðyÞ

ffiffiffiffiffiffiffiffiffiffi
2

pk1r

r
eiðk1r�p=4Þ; ð29Þ
a

r 
θ

Incident wave 

(x,y) 

(ξ ,ζ )

ρ

'r

Fig. 4. An incident wave impinging on a cylindrical scattered.
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where

p1ðyÞ ¼ �i
g1k

2
1

4ðk2
1 � k2

2Þ
cos2yþ nsin2y
� �

; ð30aÞ

p2ðyÞ ¼ �i
mhð1� g1Þ

2

4g1Dðk2
1 � k2

2Þ
cos y; ð30bÞ

p3ðyÞ ¼ i
g1rIo2

4Dðk2
1 � k2

2Þ
cos y; ð30cÞ

p4ðyÞ ¼ i
rho2

4g1Dk2
1ðk

2
1 � k2

2Þ
; ð30dÞ

tðyÞ ¼ k2
1

Z Z
eik1xeik1ðr

0�rÞ dx dz: ð30eÞ

For a cylindrical scatterer of radius a, explicit expression can be obtained for the function tðyÞ;
noting the far-field expansion r0 � r ¼ �x cos y� z sin y; referring to Fig. 4,

tðyÞ ¼ k2
1

Z a

0

rdr
Z 2p

0

eik1r½ð1�cos yÞ cosf�sinf�df ¼ 2pk1a
J1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos y

p
k1aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� 2 cos y
p : ð31Þ

Comparing to the wave function expansion method, it is clear that the Born approximation
yields a closed-form solution of the scattering pattern. Furthermore, this scattering pattern
depends only on two non-dimensional parameters, o=oc and k1a: Since the function tðyÞ describes
how the shape of the scattering pattern evolves with k1a; it is useful to consider this shape function
in more detail, which is shown in Fig. 5. It can be seen that the scattering pattern becomes
increasingly skewed towards forward scattering at higher value of k1a: In particular, the forward-
and the back-scattering component of the function tðyÞ are given by

tð0Þ ¼ pðk1aÞ
2; ð32aÞ

tðpÞ ¼ pk1aJ1ð2k1aÞ: ð32bÞ

Therefore, it is clear that the forward-scattering component increases rapidly with k1a; while the
backward-scattering component fluctuates as k1a increases.
4. Numerical results of scattering patterns

The analysis presented in the preceding section suggests that it is possible to obtain quantitative
information about the size and severity of structural damages through exploiting the variations in
scattering patterns by varying the frequency thus the wavelength of the diagnostic wave. In this
context, previous studies on beam structures [12] found that there is a strong stop-pass behavior,
viz, the amount of reflection and transmission depends strongly on the ratio of damage length to
wavelength. In the following the analytical methods presented in the preceding section will be
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employed to investigate the scattering patterns of incident extensional and flexural waves by a
circular damage. Two important cases of laminar damage representing corrosion damage in
metallic structures and delamination of composite structures will be considered.

4.1. Extensional wave

Consider the case of corrosion damage that causes a 20% reduction in cross-sectional thickness.
The following simulations are performed for an aluminium alloy with a Poisson’s ratio of 0.3. The
numerical results will be presented in terms of non-dimensional parameters (k1a and o/oe), so
they are also applicable to composite structures experiencing degradation in in-plane stiffness as a
result of impact damage, for example. Shown in Fig. 6 are the scattering patterns applicable to the
low-frequency limit o=oep0:1: It is seen that the scattering patterns vary significantly as the ratio
of damage size to wavelength increases. The absolute magnitude of the scattered wave increases
with k1a; but the strength of the forward-scattering (shadow) remains a small fraction of the back-
scattering (echo). However, at the high-frequency limit (o ¼ oe), as shown in Fig. 7, the scattering
pattern changes from echo-dominated to shadow dominated with the increase of k1a: One
important implication of these results is that it would be possible determine the size of the damage
by measuring the changes in scattering patterns with the diagnostic frequency.
Of particular interests are the magnitudes of the back- and forward-scattering amplitude, which

are shown in Fig. 8 for three different diagnostic frequencies. At the low-frequency limit, the back-
scattering magnitude oscillates more rapidly with k1a than the forward-scattering magnitude. It
should be noted that these results are for the case of single frequency. When the diagnostic signal
is narrow-banded, such as tone-burst modulated by Hanning window [12], the response would
exhibit a weaker fluctuation due to the frequency averaging effect.
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4.2. Flexural wave

As discussed in the preceding section, the scattering of flexural wave is dominated by changes in
the bending stiffness. In the following the scattering patterns will be determined for the corrosion
damage case considered in the previous section and a delamination damage, which is simulated by
a reduced flexural stiffness ðDn ¼ D=4Þ; representing a single delamination damage [12]. The
scattering patterns pertaining to the simulated corrosion damage are shown in Fig. 9, together
with predictions by the Born approximation. It can be seen in the limit of very small damage (2%
reduction in thickness), the Born approximation solution agrees with the exact solution. However,
at 20% reduction in thickness, the Born approximation solution under-predicts the magnitude of
the scattering amplitude. Nevertheless, the overall shape of the scattering pattern correlates
reasonably well with the exact solution. Similar to the case of extensional waves, the scattering of
flexural wave becomes more skewed towards forward scattering as ka increases, casting an
increasingly larger shadow with negligible echo.
The scattering patterns for the case of delamination damage are shown in Fig. 10. Again, the

same shadowing behavior is observed at high ka values. Since the flexural stiffness of the damaged
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region is only 25% of the base plate, this case is strictly speaking beyond the scope of Born
approximation. Nevertheless, the Born approximation did yield a good estimate of the shape of
the scattering pattern, with the magnitude being about 50% lower than the exact solution for
kap4: A better comparison is shown in Fig. 11 for the magnitudes of the back- and forward-
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scattering amplitude. It can be seen that the Born approximation provides a good estimate of the
forward-scattering amplitude for ka up to 6, but not for the back-scattering amplitude at large ka
values.
5. Experimental validation

A square aluminum alloy plate (thickness=1.02mm, width and height=508mm) is
instrumented with four piezoelectric transducers on one side, as illustrated in Fig. 12. The
coordinates of the four transducers are given in Table 1. The electro-mechanical properties of the
piezoelectric materials (APC850)1, which are available from the manufacturer [34], are very
similar to those of the Navy Type II (502) piezoelectric materials. The thickness and diameter of
the piezoelectric transducer are 0.25 and 6.35mm, respectively.
To investigate the wave scattering by an inhomogeneity, a circular mass made of bronze

(diameter=20mm, height=7.24mm) was bonded to the plate. The location of the added-mass is
1American Piezo Ceramics, Inc. (http://www.americanpiezo.com)

http://www.americanpiezo.com
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also given in Table 1. The number 1 transducer was subjected to narrowband tone bursts, while
the other three transducers were employed as sensors to measure the plate waves. A general
representation of this experimental configuration is illustrated in Fig. 13. Prior to bonding the
cylindrical mass to the plate specimen, experimental measurements were performed to determine
the base-line response, denoted as wðiÞ: Fig. 14 shows the sensor responses recorded at sensors 2, 3,
and 4, when sensor 1 was actuated with tone burst excitation of peak voltage of 50V. In the figure
reflections by the plate boundary were filtered out, retaining only the first arrivals of the
extensional wave (first pulse) and the flexural wave (second pulse). After a cylindrical mass was
bonded to the plate, an experiment was carried out to determine the total wave field, denoted as
wðtÞ: Subtracting the base-line data from the total wave field yields the scattered wave wðsÞ ¼

wðtÞ � wðiÞ: The so determined experimental results are also shown in Fig. 14, together with the
predictions by the present analytical method as outlined below.
For a circular piezoelectric sensor, its electric voltage response is proportional to the sum of

surface strain 2¼ �xx þ �yy: Denoting the transfer function of the sensor as KsðoÞ; the Fourier
transform of the sensor signal can be related to the Fourier transform of the surface mean strain
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Fig. 13. Configuration of an active sensor system for damage characterization.

Table 1

Coordinates of transducers

Transducer or bonded mass Coordinates (x,y) (mm)

1 (177.8, 330.2)

2 (177.8, 177.8)

3 (304.8, 355.6)

4 (355.6, 177.8)

Added mass (222.3, 270.0)
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2̂ðoÞ;

V̂ sðoÞ ¼ 2̂ðoÞKsðoÞ: ð33Þ

When a circular patch piezoelectric transducer is subjected to an electric excitation of f ðtÞ; the
surface mean strain at a distance r away is given by

2̂
ðiÞ
ðo; rÞ ¼ f̂ ðoÞgðo; k1rÞ; ð34Þ

where gðo; k1rÞ denotes the Green’s function for a circular actuator [10]. Therefore, for the
configuration shown in Fig. 13, the response of the sensor in the absence of damage or added mass
can be written as

V̂
ðiÞ

s ðoÞ ¼ f̂ ðoÞgðo; k1rsÞKsðoÞ: ð35Þ

Similarly the sensor response to the scattered wave is given by

V̂
ðsÞ

s ðoÞ ¼ 2̂ðo; rdÞKsðoÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

pk1rds

s
eiðk1rds�p=4ÞSðo; k1rdsÞ: ð36Þ
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Fig. 14. Comparison of theoretical results with experimental data.
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Combining Eqs. (35) and (36), the scattered signal can be related to the base-line signal,

V̂
ðsÞ

s ðoÞ ¼
ffiffiffiffi
rs

rd

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

pk1rds

s
ei½k1ðrdsþrd�rsÞ�p=4�V̂

ðiÞ

s ðoÞSðo; k1rdsÞ; ð37Þ

where S denotes the scattering amplitude, which is a complex number, determined by using the
exact solution presented in Section 2.2. The predicted sensor responses to the scattered wave field
are shown in Fig. 14, indicating a reasonable agreement. The discrepancies between the
experimental data and theoretical predictions could be attributed to the coupling between the
extensional wave and the flexural wave induced by the asymmetric nature of the bonded mass,
which was not considered in the theoretical modeling.
6. Conclusions

To facilitate quantitative characterization of laminar damage using distributed network of
piezoelectric sensors, analytical methods have been presented for a transversely isotropic plate
containing a cylindrical inhomogeneity. Both exact solutions based on the wave function
expansion method and an approximate solution based on the Born approximation have been
developed for the scattered flexural plate waves. A good agreement has been observed between the
theoretical prediction and the experimental results from a plate with a bonded cylindrical mass.
The present results reveal that the scattering pattern is strongly dependent on the ratio of
wavelength to the size of the inhomogeneity, which would help the selection of appropriate
diagnostic frequency and the optimal placement of sensors. By comparing against exact solutions,
the range of validity of the Born approximation has been determined for plate waves.
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